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Coherently precessing states in 'He-B 
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Abstract. Several new stable states of mherent Iamor  p-ion in superlluid 3He.B 
have teen found using both meandeld theory and numerical analysis 

Coherent Larmor precession of the magnetization in superfluid 3He-B represents a 
timedependent ordered state with the utmost broken symmetry in condensed matter. 
Such a precessing state has a rigidity that provides the high stability of coherent 
precession. This is the main feature of an ordered state with broken symmetry, and 
it distinguishes the dynamical ordered states in an essential way from the pattem- 
formation phenomena that take place in dissipative systems. Dissipation does not play 
an important part in these dynamical states of Larmor precession, since it is easily 
compensated by power supply from the applied radiofrequency field. The amplitude 
of the RF field is usually so small that it has no effect on the structure of the precessing 
state. The main role of the RF field is to choose such precessing states that are in 
resonance with the RF field. Therefore, the precessing states are described by broken 
symmetry principles and energy considerations, like the stationary states of condensed 
matter with broken symmetry. 

One such anomalously stable coherent dynamical state, the homogeneously 
precessing domain (HPD), was discovered in 1984 as a result of both theoretical 
and experimental efforts [l], and is now used for the experimental investigation 
of topological objects in 3He-B, such as axisymmetric and non-axisymmetric mass 
vortices [2] and combined spin-mass vortices with a soliton tail [3]. Until now only 
this HPD state has been exploited. However, there is evidence of other long-lived 
precessing states that are different from the conventional HPD [4]. On the other 
hand, numerical simulations [5] revealed long-lived regimes different to that discussed 
in 111. Here we discuss several precessing states, which can be stabilized by shifting 
the frequency of the applied RF field from the Larmor value, by counterflow between 
the normal and superfluid motions, and by the magnitude of the applied RF field. 
These states can also be used for the investigation of 3He-B, especially in the low- 
temperature limit when dissipation is small. Here we concentrate on the case when 
the magnitude of the magnetization is close to its equilibrium value: IS/ = x H .  Other 
states, which appear to be stable at special values of the spin magnitude, IS1 = ~ x H  
and 1.91 = Z x H ,  were found by Kharadze and Vachnadze [6] (see figure 1). 

The Larmor precession of superfluid 3He in the Limiting case, when the spin- 
orbital (dipole) interaction is neglected, is highly degenerate and can be obtained by 
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Figure l. The homogeneously precessing states in the plane S,/d+-S,/.#w), where 
s(q) = xHo is the equilibrium magnitude of the magnetization. The stales discussed m 
lhis paper ( 6 g w  2) m m p n d  to lhe equilibrium magnetization and oceupy the half- 
circle 04 radius 1. The sable w i n g  sales discmeted bj Khamd7.s and Vachandze [6] 
(w slates) have either double the value or half the value of the equilibrium magnetization. 
The equilibrium p i l i o n s  of the pEceasing stales on the w m p n d i n g  c u m  (fuU 
circles) depend on the frequency U of the RP Bel4 the pinfa  in the figure wnrspand 
to the case when w appmacha the lamor frequency. HPD denotes lhc mnventional 
homogeneously preces%ing domain (this -e can be given to any of the dircussed 
precessing stater; historically this name was given to the branch of the 6s slate thal 
wntinues telm the p i n t  s,/s(q) = -114). NPD denotes the SlaliOMry state. BS 
dcnotes the BrinkmanSmith mode. denotes the mode wilh u a n s v ~  spin: this can 
be either the BS mode with 3, = Cl, I ,  = 1 or the mode with i, = 0, I, = -1. which 
is a bordering phase telween the &!-Is mode and the RO mode (these WO modes are 
not shown m figure 1; ge figure 2). Rs denotes stales wilh mersed spin. f f i  denotes 
states with the spin aligned with the magnaic Ecld. 

two symmetry operations from the elementary initial stationary state; for example, 
with the equilibrium magnetization do) = XH [I. These operations include orbital 
rotation in the laboratory frame and spin rotation in a frame rotating with the Larmor 
frequency wL = yH (we further set the gyromagnetic ratio for the 3He atom to be 
y = 1). The latter symmetry results from the Larmor theorem, which states fhat the 
influence of a magnetic field on the spins of 3He atoms completely disappears in a 
system rotating with the Larmor frequency. nerefore the spin rotation operation 
in the precessing frame does not change the Leggett equations for S and the order 
parameter. If R(s) is the matrix of spin rotations in the precessing frame and R(L)  is 
the matrix of the orbital rotations in the laboratory frame, they define the orientation 
of the order-parameter mauix and magnetization S,(t) for the general state of the 
Larmor precession. 

For the isotropic B-phase state, where Cooper pairing occurs in the state with J = 
0, the initial stationary state can be chosen with the following value of the 3 x 3 matrix 
order-parameter: A?! = constant x Sei.  Applying the symmetry operations to thii 
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state one obtains the general precessing B-phase state A(t) , i  =constant x R,:(t) ,  
where the timedependent orthogonal matrix R is 

Here O(%,wLt)  describes the transformation from the laboratory frame into the 
rotating frame-this is a rotation about the z axis (along H) by the angle wLt. 
Equation (1) shows that the symmetry operation related to the spin subsystem contains 
(i) the transformation from the laboratory frame into the precessing frame, then (E) 
the R(’) rotation within this frame and after that (iii) the inverse transformation back 
to the laboratory frame. 

The space of the degenerate states with Larmor precession is larger than 
for the stationary states. Though the dynamical state is described by one time- 
dependent orthogonal matrix R ( t ) ,  which cm be represented in terms of the axis 
6(t) and the angle O ( t )  of rotation, each state is nevertheless characterized by two 
time-independent matrices, R(s) and R(L) .  This is distinct from the single time- 
independent degeneracy parameter R = R(S)R(L) that characterizes the stationary 
Bphase. The physical meaning of these two matrices is as follows. The R(s) 
matrix shows the orientation of the spin in the precessing frame according to (l), 
Sprhmc B = RE)$). If 3 = Sprhme/lSI is the direction of the magnetization in 

the precessing frame, then its projection on H is ŝ , = RI:). The R(L)  matrix 
shows the orientation f of the orbital momentum of Cooper pairs, which is defined as 
Li = -Rei(t)S,(t). From equation (1) it follows that Li = - R s ) S c )  is constant 
in the laboratory frame. We choose here the opposite direction of the unit vector of 
the orbital momentum: f =  -L/lSl. If f, is the z projection of [ one has f, = R$$). 

Four terms contribute to the energy of the coherently precessing state and lift the 
degeneracy (the Sz x SO(3)  degeneracy, see. [7]) of the general Larmor precession. 

(i) The dipole energy (A4), after averaging over the period of precession, depends 
on only three degeneracy parameters, iz, f, and @ (this energy was fist constructed 
by EL” [SI, who used a different set of degeneracy parameters): 

F D - - 2  Ex Qz L{[ 2 i - L  2 2 -k $cos@(l + ;,)(I + fz)]* + :(I- B,)’(1- fZ)’ 

+ (1 - & ( I -  4)(1 +cos@)}. (2) 

Here R, is the Leggett frequency, which we consider to be small, Q i / w i  << 1, 
and the variable @ can be defined in the following way: if one introduces the 
Euler angles for the matrices R(L) and R(s), R = R,(a)Ry(p)R,(y), then 
@ = a(s) + y(s) - dL) - yCL). Note the symmetry between the spin and orbital 
vectors B and f in the dipole energy. 

(U) The so-called spectroscopic term appears if the frequency, w ,  of the RF field 
deviates from Larmor frequency, wL. In this case the Zeemann energy - H  . S is not 
compensated completely by the Larmor energy of precession, w .  S; therefore one has 
a difference, which is the Zeeman energy in the frame, rotating with the frequency 
of the RF field [9]: 

F, = ( w  - E r ) .  s = XWL(W -w,)Sz. (3) 
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(i) The interaction of the counterflow with the orbital anisotropy vector ? (see, 
for example, [lo]): 

(4) 1 
Fmunledow = -ZPS(v* - U , )  . ilz 

where pa is the anisotropy of the superfluid density, which is induced by the magnetic 
field. 

(iv) The interaction of the magnetization with the transverse RF field: 

Fm = -Hm. S. (5) 

The equilibrium states are obtained by the minimization F = Fmunte~w t F, t 
FD t FR~: 

P = u i :  t w ~ , + { [ ~ , i * - ~ t ~ c o s @ ( 1 t a , ) ( l t i , ) ] * t ~ ( 1 - ~ , ) ~ ( 1 - ? ~ ) ~  

+ (1 - s^:)(l- e ) ( 1 +  cos@)} - h m  (6) 

where we normalized the energy in terms of the dipole energy, introducing the 
dimensionless variables 

15WL(W - WL) 
w =  

- 15F F =  - 
2x0: 
15P,(7JS - v,)z 15w HRF h =  cos Q. U =  

4x0; 2Qt 
(7) 

In the last term Q is the angle between the transverse magnetization and the 
transverse RF field; this term forces the magnetization to precess with the frequency 
w of the RF field. The angle Q is close to zero when the dissipation is small. 

As distinct from [ll], where the phase diagram in the w-U plane was constructed, 
we shall concentrate on the case when the counternow is absent, U = 0, but instead 
consider the case of strong RF fields h, which can compete with other interactions 
and can thus stabilize some phases that are otherwise unstable. Minimization shows 
that there are at least six different stable or metastable states, which correspond to 
local energy miniia (see figure 2). 

(i) The non-precessing state (NPD). This is the stationary state with equilibrium 
magnetization, 5 .̂ = 1, and with orbital angular momentum within the range -+ < f, < 1. in this range the dipole energy is exactly zero.. 

(ii) The HPD mode. This mode has been extensively studied, both theoretically 
and experimentally (see 1121). It has cos 0 = 1, fixed orbital momentum i, = 1, and 
magnetization in the range -1 < ŝ , < -$. The equilibrium value of magnetization 
within this range is defined by h and w. Fbr small h: 

j 
4 8 '  

This solution exists only for positive frequency shifts, w > 0. 
(iii) The BrinkmanSmith (BS) mode. This is the mirror image of the NPD state: 

it has ?= = 1, and spin within the range -4  < %. < 1. The dipole energy is also 
exactly zero in this state. For h - 0 this solution exists only at w = 0 and is unstable 
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HPD -114 

sF-1/4ur18 (WO) 

-1 ps 

1 ES 

sz-i(i+h2hv2F1'2 
-- 

NPD s p i  (W.0) 

i 

Figure 2. The homogeneously pre.ozaing states with an equilibrium.magnitude of 
magnetizalion, S = 5(-), in the l A ,  plane, where 6. = S,/S. 1. = - L z / S .  
In addition p the modes discussed in figure I, Rsn denotes slates cn the a" 
( l - iz)( l - lz)  = 2 mnnecting the Rs and Ts points, and RO denotes lhe mode wilh the 
reversed orbilal momenlum. The equilibrium valuer of the longitudinal spin component 
8, for the precessing states we shown in lems of the normalized frequency shirt, w,  
and m lerms of the normalized magnitude of the transvene RF field, h, if the lalter is 
imponant for stability. For w + 0 there equilibrium s a l e m r e  shown by full cirdes in 
figure 1. 

0 

szc-wi3 (WCO) 

towards HPD or NPD, or to HPD-NPD twodomain precession 1121. It is stabilized due 
to finite h and appears to exist for both positive and negative frequency shifts w. 
This state is found from minimization of the spectroscopic and RF terms 

SZ 

-114 

w.?, - h e  

TS 

which gives the following equilibrium spin projection: 

-1 RO 0.54 

where 

h / w  = ~ H R ~ / ( W  - wL).  (10) 

At zero frequency shift the equilibrium magnetization is perpendicular to the magnetic 
field: i, = 0. 

(iv) The precessing state with reversed spin (RS). At small h the following solution 
exists: gz = -1, i, = 0, while ip is arbitrary. This RS state differs by the orientation 
of i from another solution with d, = -1, which exists on the edge of the HPD line 
and is unstable according to Fomin [12]. This new RS state is degenerate on the two- 
dimensional surface: one degree of freedom comes from the arbitrary orientation of 
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L in the transverse plane and the other from e. From (1) it follows that the order 
parameter in the state with E =  i. is given in terms of the axis A ( t )  and the rotation 
angle e ( f )  of the dynamical matrix R ( 1 )  in the following way: 

cose=-coszwi  Asine=Qsin’wtt ( i - i . ) s inwtmswt .  (11) 

Let us consider the corrections to the average (‘mean-field’) description of the Rs 
state. The dipole torque (A3) 

T =  @Z,ii~ine(cose+ $) (12) 

is non-zero in the Rs state and thus leads to oscillations of the longitudinal spin 
component: 

S S , ( ~ )  = Jdt  T, = LzS(cos2wt 15 wz + i c o s h t ) .  (13) 

As a result the difference between the upper and lower values of the Y projection of 
spin is 

(14) 
i-22 AS, = O.lS-!jS. 
W 

This shows the range of applicability of the mean-field approximation in which such 
oscillations are neglected: Cl?/w2 < 1. 

It is important to note that it is difficult to maintain the RS state hy the transverse 
RF field. Since. the magnetization is nearly antiparallel to the constant field the 
transverse component of magnetization is rather small. Therefore the coupling with 
the pumping RF field practically disappears and nothiig opposes the relaxation: (As) 
cannot be satisfied. One way of relaxation for this state, which was observed in 
numerical analysis, is longitudinal relaxation: the spin is aligned antiparallel to the 
field, is = S,/S = -1, but the magnitude 1.91 of the magnetization deneases 
from the equilibrium value IS1 = xH. Eially, this state relaxes to the metastable 
Kharadze-Vachnadze (KV) state with IS1 = $xH. This provides the method for 
reaching KV states in NMR experiments. 

(v) The Rs-Ts states. At h + 0 the RS mode appears to be a particular case of 
a whole family of states, situated between the Rs mode and a mode with transverse 
spin (TS), which we call the =-’E curve (figure 2). In these states 

cos@ = -1 

which gives 

The R S - ~  mode corresponds to the minimum of (U) 

(1 - j2)(l - i,) = 2 (16) 

with the energy = 3/4. As in the Bs mode, for h + 0 this solution exists only when 
w = 0, while at finite h it is stabilized by competition between the spectroscopic and 
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Table 1. The equilibrium values of the longitudinal mmpnent of magnetization 3, m 
RO (P. > 0) and RS-IS (3. < 0) states obtained by numerical analysis (gz (num)) and 
in lhe mean-field lheory (SZ (anal)). 

W / W L  H w ( G )  r(kHz) S.(num) w 6 ;,(anal) 
0.994 2 30 +0.23 -0.81 0.4 +a24 
0.996 
0.997 

0998 
0.959 

1.m 
1.005 
1.001 
1.002 
1.003 
1.004 
1.0045 
la05 
1.007 
1.010 
1.015 
1.015 
1.020 
1.025 

a9975 

a9595 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
5 
5 
7 
6 
5 
5 

30 
30 
30 
30 
30 
30 
M 
30 
30 
30 
30 
30 
30 
30 
15 
15 
15 
15 
15 
U 

+0.14 

+0.08 
+O.M 
-0.01 
-0.07 
-0.15 

+ai0 

-ax 
-a37 
-a57 
-1172 
-a82 
-a% 
-0.86 
-0.66 
-aso 
-asz 
-0.86 
-0.93 
-0.96 

-0.54 
-0.40 
-0.34 
-0.27 
-0.13 
-0.07 

0 
+0.07 
+ai3  
+a27 
+am 
+a54 
+0.61 
+0.68 
+0.94 
+1.35 
+20 
+zo 
+27 
+3.4 

0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 
1.0 
1.0 
1.4 
1.2 
1.0 
1.0 

+0.16 
+a12 
+a i0  
+0.08 
+ O M  
+CUI2 

0 
-0.16 
-a31 
-055 
-0.70 
-am 
-an 
-a@ 
-aso 
-0.82 

-a93 
-0.96 

-a86 

-a86 

the RF terms, with the same equilibrium value of the longitudinal spin component 
(see (9)): 

A 1 sz = - d W '  
However, this state is stable only when w > 0. For w < 0 it can be stabilized only 
by the counterflow. In table 1 the mean-field result of equation (17), $,(anal), is 
compared with the exact results of numerical analysis, .^,(num), obtained using a 
computer program developed by Leman and Go10 [5]. 

(vi) The mode with reversed orbital momentum (RO). At w < 0, if there is 
no counterflow, the WTS mode is unstable towards the mode with reversed orbital 
momentum, f, = -1. This state is obtained by minimization of all three energy terms 
with c o s @  = -1 

For small 8, or small h we obtain the following results for the equilibrium 
magnetization: 

A .. W s =-- ' 3 + h '  
I ,  = -1 

At h = 0 thii transforms to the result obtained in [U]. At h = 0 this mode is stable 
in the region 

m- 1 O<.^,<- 10 . 
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In table 1 equation (19) is compared with the results of computer simulation. 
All of the above-listed six states were reproduced, stabilized and identified with a 

computer simulation program developed by Leman and Golo [SI. In this program the 
Leggett equations are numerically solved in the presence of finite dissipation, which 
is compensated by the power supply kom the RF field. The numerical results for 
stable RO and Rs-TS States are discussed in the appendix. We used large dissipation 
to decrease the computing time; nevertheless the results agree within a few per cent 
with those obtained above in the mean-field approximation, i.e. when 0: ut, 
and in the l i t  of no dissipation and power absorption. Equation (14), which goes 
beyond the mean-field theory, was also reproduced in numerical simulations. 

At different phases of the Larmor precession, the precessing states can form 
spatial domains in the experimental cell, separated from each other by phase 
boundaries. Until now only one such interface, that separating HPD and NPD, has been 
observed and exploited 111. One may expect other interfaces to exist In particular, 
the interface between RS-Ts and RO domains can be stabilized by an applied magnetic 
field gradient. Since the RS-TS domain exists at a positive frequency shift and the RO 
domain exists at a negative frequency shift, the position r of this phase boundary is 
defined by the same equation, ~ H ( T )  = w ,  as the position of the interface between 
HPD and NPD. 

The way that new states have been obtained in numerical simulation can give us 
some hint on how to reach these States in real NMR experiments. In particular, a 
simple way to obtain the RS-TS and RO modes is to push the HPD mode to its Rs edge, 
iz = -1 (see figure 2), where the HPD becomes unstable towards a reorientation of 
the i vector from the parallel to the tranweme direction. The thus-formed RS state 
then relaxes to the RS-TS state if the applied frequency shift is positive, w > 0, 
or to RO at negative frequency shifs w < 0. At large negative frequency shfit the 
RO mode appears to be unstable towards the formation of the KV state with a non- 
equilibrium magnitude of spin: IS1 = f x H .  In another scenario the RS mode with 
8. = -1, 2, = 0 continuously passes along the vertical line of figure 1 with a decrease 
in the magnitude of the magnetization until it reaches one half of the equilibrium 
magnetization, and then relaxes to one of the KV states. 

Among all the precessing states the BS and HPD modes have the lowest dissipation; 
that is why only the HPD mode has been exploited at moderate temperatures. The 
reason is that both the BS mode and the HPD mode, when close to 8, = -1/4, 
correspond to the true minimum of the dipole energy and therefore the dipole 
torque is nearly absent for these states, which means a negligibly small Leggett- 
l k a g i  relaxation. The other states correspond to the minimum of the dipole energy 
averaged over the period of precession. This means that the instantaneous dipole 
torque is non-zero, and therefore the Leggett-lkagi relaxation is essential for these 
states. The other modes should be observed at lower temperature where dissipation 
decreases. It is not clear, however, if the new modes are related to the new NMR 
regime found at low temperature 141. 
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Appendix 

We have used a computer program developed by Leman [SI to solve numerically the 
Leggett equations: 

Here the dipole torque is 

and the dipole energy 

FD(Ri)  = F,(R,;) = AxQ:(W R -  ;Iz. (-44) 

The external field H consists of the constant field H,, and the transverse RF field 
Hw(w)  I Hu with the frequency w close to the Larmor frequency wL = H,. We 
have used H,, = 330 G and QL = 250 IrHz; all other parameters are given in the table. 
We maintained a continuous linearly polarized RF field, Hw, which mrresponds to 
HRF 12 for the proper circularly polarized component, i.e. for the component that 
precesses in the Same direction as the magnetization. The pumping from the RF 
field compensates the energy losses, caused by dissipation, according to the following 
equation: 

wH,S,sina = rTZ (As) 

where (Y is the angle between the precessing w field and the precessing transverse 
magnetization. In the table the dissipation is described by the parameter of 
longitudinal relaxation, r = rat. 

The analytical values of 8, were calculated using (19) for the RO mode, which 
exists at negative frequency shifts w < 0, and (17) for the RS-TS mode, which exists 
at positive frequency shifts w > 0. The values for w and h were obtained using (7); 
it is important that in the equation for h one should use half of the magnitude of 
the RF field, since only one circularly polarized component of the field is important. 
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