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Abstract. Several new stable states of coherent Larmor precession in superfluid *He-B
have been found using both mean-field theory and numerical analysis.

Coherent Larmor precession of the magnetization in superfluid 3He-B represents a
time-dependent ordered state with the utmost broken symmetry in condensed matter.
Such a precessing state has a rigidity that provides the high stability of coherent
precession. This is the main feature of an ordered state with broken symmetry, and
it distinguishes the dynamical ordered states in an essential way from the pattern-
formation phenomena that take place in dissipative systems. Dissipation does not play
an important part in these dynamical states of Larmor precession, since it is easily
compensated by power supply from the applied radiofrequency field. The amplitude
of the RF field is usually so small that it has no effect on the structure of the precessing
state. The main role of the RF field is to choose such precessing states that are in
resonance with the RF field. Therefore, the precessing states are described by broken
symmetry principles and energy considerations, like the stationary states of condensed
matter with broken symmetry.

One such anomalously stable coherent dynamical state, the homogeneously
precessing domain (HPD), was discovered in 1984 as a result of both theoretical
and experimental efforts [1], and is now used for the experimental investigation
of topological objects in *He-B, such as axisymmetric and non-axisymmetric mass
vortices [2] and combined spin—mass vortices with a soliton tail [3]. Until now only
this HPD state has been exploited. However, there is evidence of other long-lived
precessing states that are different from the conventional HPD {4]. On the other
hand, numerical simulations [5] revealed long-lived regimes different to that discussed
in [1]. Here we discuss several precessing states, which can be stabilized by shifting
the frequency of the applied RF field from the Larmor value, by counterflow between
the normal and superfluid motions, and by the magnitude of the applied RF field,
These states can also be used for the investigation of *He-B, especially in the low-
temperature limit when dissipation is small. Here we concentrate on the case when
the magnitude of the magnetization is close to its equilibrium value: |S| == x H. Other
states, which appear to be stable at special values of the spin magnitude, |S| = xH
and |S| = 2x H, were found by Kharadze and Vachnadze [6] (see figure 1).

The Larmor precession of superfluid *He in the limiting case, when the spin-
orbital (dipole) interaction is neglected, is highly degenerate and can be obtained by
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Figure 1. The homogeneously precessing states in the plane Sz /5(8)-5; /5(e4), where
S519) = y Hp is the equilibrium magnitude of the magnetization. The states discussed in
this paper (figure 2) correspond to the equilibrium magnetization and occupy the half-
circle of radius 1. The stable precessing states discovered by Khavadze and Vachandze [6]
{&v states) have either double the value or half the value of the equilibrium magnetization.
The equilibrium positions of the precessing states on the corresponding curves (full
circles) depend on the frequency w of the Rr field; the points in the figure correspond
1o the case when w approaches the Larmor freqtiency. HPD denotes the conventional
homogeneously precessing domain (this name can be given to any of the discussed
precessing states; historically this name was given to the branch of the BS state that
continues below the point S, /5(%9) = —1/4). NPD denotes the stationary state. BS
denotes the Brinkman-Smith mode. 75 denotes the mode with transverse spin: this can
be either the Bs mode with §; = 0, {; = 1 or the mode with 3; = 0, {; = -1, which
is 2 bordering phase between the RS-TS mode and the RO mode (these two modes are
not shown in figure §; see figure 2). RS denotes states with reversed spin. AS denotes
states with the spin aligned with the magnetic ficld.

two symmetry operations from the elementary initial stationary state; for example,
with the equilibrium magnetization $(® = xH [7]. These operations include orbital
rotation in the laboratory frame and spin rotation in a frame rotating with the Larmor
frequency w; = «H (we further set the gyromagnetic ratio for the 3He atom to be
~ = 1). The latter symmetry results from the Larmor theorem, which states that the
influence of a magnetic field on the spins of >He atoms completely disappears in a
system rotating with the Larmor frequency. Therefore the spin rotation operation
in the precessing frame does not change the Leggett equations for § and the order
parameter. If R(S) is the matrix of spin rotations in the precessing frame and R(%) is
the matrix of the orbital rotations in the Jaboratory frame, they define the orientation
of the order-parameter matrix and magnetization S, (t) for the general state of the
Larmor precession,

For the isotropic B-phase state, where Cooper pairing occurs in the state with J =
0, the initial stationary state can be chosen with the following value of the 3 x 3 matrix

order-parameter: Ag? = constant x §,;. Applying the symmetry operations to this
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state one- obtains the general precessing B-phase state A(t),; = constant x R _;(?),
where the time-dependent orthogonal matrix R is .

Rai'(t) - aﬁ(z th)R,@‘f -).#(Z, "—‘DJLt)R(L)

S (1) = (S) g(0) 0
(1) = aﬁ(z:th)Rﬂ-y S-y -

Here O(2,wt) describes the transformation from the laboratory frame into the
rotating frame—this is a rotation about the z axis (along H) by the angle wit.
Equation (1) shows that the symmetry operation related to the spin subsystem contains
(i) the transformation from the laboratory frame into the precessing frame, then (ii)
the R(5) rotation within this frame and after that (iii) the inverse transformation back
to the laboratory frame,

The space of the degenerate states with Larmor prec&csmn is larger than
for the stationary states. Though the dynamical state is described by one time-
dependent orthogonal matrix R(t), which can be represented in terms of the axis
#(t) and the angle 6(t) of rotation, each state is nevertheless characterized by two
time-independent matrices, R(°) and R(L). This is distinct from the single time-
independent degeneracy parameter R = R{®IR(Z) that characterizes the stationary
B-phase. The physical meaning of these two matrices is as follows. The R(5)
matrix shows the orientation of the spin in the precessing frame according to (1),
S};"“"“’ R(S)S(”}. If § = gprfame /|5 is the direction of the magnetization in

the precessing frame, then its projection on H is 3, = RSS. The R(Z) matrix
shows the orientation { of the orbital momentum of Cooper pairs, which is defined as
L; =-R_;(t)5,(t). From equation (1} it follows that L; = -REXI;)SE’) is constant
in the laboratory frame. We choose here the opposite direction of the unit vector of
the orbital momentum: { = —L/[S][. If [, is the 2 projection of [, one has [, = R

Four terms contribute to the energy of the coherently precessing state and lift the
degeneracy (the S? x SO(3) degeneracy, see [7]) of the general Larmor precession.

(i) The dipole energy (A4), after averaging over the period of precession, depends
on only three degeneracy parameters, §,, {, and @ (this energy was first constructed
by Fomin [8], who used a different set of degeneracy parameters):

Fp=2xQ{[8.0, - L+ Loos ®(1+ 8,)(1+ D)2 + (1 - 8,)*(1 - [,)?
+(1-382)(1- B)(1 4 cos @)}, )

Here €2, is the Leggett frequency, which we consider to be smail, Qf /wf < 1,
and the variable ® can be defined in the following way: if one introduces the
Euler angles for the matrices R and R(5), R = R,(a)R,(B)R,(7), then
@ = ofl%) + 4(9) — oL} - (L), Note the symmetry between the spin and orbital
vectors § and [ in the dipole energy.

(ii) The so-called spectroscopic term appears if the frequency, w, of the RF field
deviates from Larmor frequency, «wy. In this case the Zeemann energy —H - § is not
compensated completely by the Larmor energy of precession, w- §; therefore one has
a difference, which is the Zeeman energy in the frame, rotating with the frequency
of the RF field [9):

F,=(w—H) 8= xw(w—w,)§,. 3)
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(iii) The interaction of the counterflow with the orbital anisotropy vector [ (see,
for exampie, [10]):

Foountertiow = _%P; [(”a - "-’-n) - j]z 4

where p, is the anisotropy of the superfluid density, which is induced by the magnetic
field.
(iv} The interaction of the magnetization with the transverse RF field:

The equilibrium states are obtained by the minimization F' = F o + £ +
FD -+ FRF:

F=ull +ws, +{[5,0, - 3+ oos (14 8,)1+ L)+ §(1- 8,°(1-1,)°
+ (1- 831~ B) (14 cos @)} — hyf1- 82 ©)

where we normalized the energy in terms of the dipole energy, introducing the
dimensioniess variables

% _ 15F _ 15wy (w =)

P Y= @ -
_15p,{v,—v,)? h = 15w Hyg cos
T &9 LY '

In the last term o is the angle between the transverse magnetization and the
transverse RF field; this term forces the magnetization to precess with the frequency
w of the RF field. The angle « is close to zero when the dissipation is smail.

As distinct from [11], where the phase diagram in the w-u plane was constructed,
we shall concentrate on the case when the counterflow js absent, = = 0, but instead
consider the case of strong RF fields h, which can compete with other interactions
and can thus stabilize some phases that are otherwise unstable. Minimization shows
that there are at least six different stable or metastable states, which correspond to
local epergy minima (see figure 2).

(i) The non-precessing state (NPD). This is the stationary state with equilibrium
magnetization, 5, = 1, and with orbital angular momentum within the range
~1 < I, < 1 In this range the dipole energy is exactly zero..

(ii) The HPD mode. This mode has been extensively studied, both theoretically
and experimentally (see [12]). It has cos & = 1, fixed orbital momentum [, = 1, and
magnetization in the range —1 < 5, < —}. The equilibrium value of magnetization
within this range is defined by 2 and w. For small h:

Ut

E Ll
e

5§, =~

This solution exists only for positive frequency shifts, w > 0.

(iii} The Brinkman-Smith (BS) mode. This is the mirror image of the NPD state:
it has {, = 1, and spin within the range -1 < 3, < 1. The dipole energy is also
exactly zero in this state. For & — O this solution exists only at w = 0 and is unstable
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Figure 2. The homogeneously precessing states with an equilibrium magnitude of
magnetization, § = ${0), in the [ plane, where §; = 5./5, i = ~L./8.
In addition to the modes discussed in figure 1, Rs-TS denotes states on the curve
{(1— 5,)(1~ -} = 2 connecting the RS and TS points, and RO denotes the mode with the
reversed orbital momentum. The equilibrium values of the longitudinal spin component
4. for the precessing states are shown in terms of the normalized frequency shift, w,
and in terms of the normalized magnitude of the transverse RF ficld, &, if the latter is
important for stability. For w — 0 these equilibrium states .are shown by full circles in
figure 1.

towards HPD Or NPD, Or t0 HPD~-NPD two-domain precession [12]. It is stabilized due
to finite 7 and appears to exist for both positive and negative frequency shifts c.
This state is found from minimization of the spectroscopic and RF terms

wé, — hy/1— &2 _ @®

which gives the following equilibrium spin projection:

= ——— 1 __sisnw ©)

V1+ R fuw

where
hw = vHgp/(w — ). (10)

At zero frequency shift the equilibrium magnetization is perpendicular to the magnetic
field: 5, = 0.

(w) The precessing state with reversed spin (RS). At small & the following solution
exists: 5§, = —1, ! = 0, while & is arbitrary. This RS state differs by the orientation
of [ from another solution with §, = —1, which exists on the edge of the HPD line
and is unstable according to Fomin [12]. This new RS state is degenerate on the two-
dimensional surface: one degree of freedom comes from the arbitrary orientation of
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L in the wansverse plane and the other ffom ®. From (1) it follows that the order
parameter in the state with { = & is given in terms of the axis A(¢) and the rotation
angle 6(t) of the dynamical matrix R(#) in the following way:

cos § = — cas? wt fsing = gsin®wi + (5 — &) sin wt cos wt. (11)

Let us consider the corrections to the average (‘mean-field’) description of the Rs
state. The dipole toique (A3)

T =50} Asinf(cos 6+ ) (12)

is non-zero in the RS state and thus leads to oscillations of the longitudinal spin
component:

- _19f 1
§5,(t) = /dt T, = L5005 2wt + Jcosdut). (13)

As a result the difference between the upper and lower values of the » projection of
spin is

Qz
AS, = 0.15-5‘2=s. (14)

This shows the range of applicability of the mean-field approximation in which such
oscillations are neglected: Qf /o? < 1. :

It is important to note that it is difficult to maintain the Rs state by the transverse
RF field. Since the magnetization is nearly antiparallel to the constant field the
transverse component of magnetization is rather small. Therefore the coupling with
the pumping RF field practically disappears and nothing opposes the relaxation: (AS5)
cannot be satisfied. One way of relaxation for this state, which was observed in
numerical analysis, is longitudinal relaxation: the spin is aligned antiparallel to the
field, 5, = 5,/5 = -1, but the magnitude |S| of the magnetization decreases
from the equilibrium value |S| = xH. Finally, this state relaxes to the metastable
Kharadze-Vachnadze (Kv) state with |S| = 1y H. This provides the method for
reaching Kv states in NMR experiments.

(v) The Rs-Ts states. At h # 0 the RS mode appears to be a particular case of
a whole family of states, situated between the RS mode and a mode with transverse
spin (Ts), which we call the Rs—TS curve (figure 2). In these states

cosdP = —1
which gives

Fp=3+3l1-8)0-1)-2 (15)
The Rs-Ts mode corresponds to the minimum of (15)

(1-8)a-L)=2 (16)

with the energy F == 3/4. As in the 8S mode, for h — O this solutjon exists only when
w = 0, while at finite & it is stabilized by competition between the spectroscopic and
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Tuble 1. The equilibrium values of the longitudinal component of magnetization §: in
RO (3; > 0) and RS-TS (§: < 0) states obtained by numerical analysis (4: (num)) and
in the mean-field theory (3: (anal)).

wiw, Hpp(G) TkHz) &§:(num) w k &, (anal)

0.994 2 30 +0.23 -081 04 4024
0.996 2 30 +0.14 -054 04 4016
0.997 2 30 +-0.10 =040 04 <4012
09975 2 30 +0.08 —034 04 4010
0.998 2 K1) +0.04 =027 04 4008
0.999 2 K1) -0.01 -0.13 04 +004
09995 2 0 -0.07 -007 04 <4002
1.000 2 0 -015 0 64 0O

10005 2 30 -0.25 4007 04 -016
1.001 2 K -0.37 +0.13 04 -031
1.002 2 30 -0.57 +027 04 -0S55
1.003 2 30 =072 +040¢ 04 -0.70
1.004 2 30 —0.82 +0.54 04 -030
10045 2 30 -0.84 +061 04 -083
1.005 2 30 —0.86 +068 04 -086
1.007 5 15 ~0.68 +094 L0 -058
1016 5 15 -0.80 +135 L0 -0.30
1615 7 15 -0.82 +2.0 i4 -082
1.615 6 15 -0.86 +20 12 -086
1.020 5 15 -093 +2.7 10 -093
L025 5 15 —0.96 +3.4 10 -09a6

the RF terms, with the same equilibrium value of the longitudinal spin component
(see (%))
1
= ——— 1

. T (17)
However, this state is stable only when w > 0. For w < 0 it can be stabilized only
by the counterflow. In table 1 the mean-field result of equation (17), 5,(anal), is
compared with the exact results of numerical analysis, §,(num), obtained using a
computer program developed by Leman and Gole [5].

(vi) The mode with reversed orbital momentum (RO). At w < O, if there is
no counterflow, the Rs-Ts mode is unstable towards the mode with reversed orbital
momentum, {, = —1. This state is obtained by minimization of zll three energy terms
with cos @ = —1 '

F=343[(1~3)1-1,)-22+ws, — hy/1-42, (18)
For small 5, or small A we obtain the following results for the equilibrium
magnetization:

. ,\ uw

l: =-1 s, = —m.

At h = 0 this transforms to the result obtained in [11]. At A = 0 this mode is stable
in the region

(19)

g<ﬁ_

0< 38, 5 (20)
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In table 1 equation (19) is compared with the results of computer simulation.

All of the above-listed six states were reproduced, stabilized and identified with a
computer simulation program developed by Leman and Golo [5]. In this program the
Leggett equations are numerically solved in the presence of finite dissipation, which
is compensated by the power supply from the RF field. The numerical results for
stable RO and RS—Ts states are discussed in the appendix. We used large dissipation
to decrease the computing time; nevertheless the results agree within a few per cent
with those obtained above in the mean-field approximation, ie. when 9} « wi,
and in the limit of no dissipation and power absorption. Equation (14), which goes
beyond the mean-field theory, was also reproduced in numerical simulations.

At different phases of the Larmor precession, the precessing states can form
spatial domains in the experimental cell, separated from each other by phase
boundaries. Until now only one such interface, that separating HPD and NPD, has been
observed and exploited [1]. One may expect other interfaces to exist. In particular,
the interface between Rs-Ts and RO domains can be stabilized by an applied magnetic
field gradient. Since the RS—Ts domain exists at a positive frequency shift and the RO
domain exists at a negative frequency shift, the position r of this phase boundary is
defined by the same equation, - H(r) == w, as the position of the interface between
HPD and NPD.

The way that new states have been obtained in numerical simulation can give us
some hint on how to reach these states in real NMR experiments. In particular, a
simple way to obtain the RS-Ts and RO modes is to push the HPD mode to its RS edge,

~

5, = —1 (see figure 2), where the HPD becomes unstable towards a reorientation of
the { vector from the parallel to the transverse direction. The thus-formed RS state
then relaxes to the RS-TS state if the applied frequency shift is positive, w > 0,
or 1o RO at negative frequency shift, w < 0. At large negative frequency shift the
RO mode appears to be unstable towards the formation of the Kv state with a non-

equilibrium magnitude of spin: |S| = 1xH. In another scenario the RS mode with

4, = —1, [, = 0 continuously passes along the vertical line of figure 1 with a decrease
in the magnitude of the magnetization until it reaches one half of the equilibrium
magnetization, and then relaxes to one of the KV states,

Among all the precessing states the BS and HPD modes have the lowest dissipation;
that is why only the HPD mode has been exploited at moderate temperatures. The
reason is that both the BS mode and the HPD mode, when close to §, = —1/4,
correspond to the true minimum of the dipole energy and therefore the dipole
torque is nearly absent for these states, which means a negligibly small Leggett—
Takagi relaxation. The other states correspond 1o the minimum of the dipole energy
averaged over the period of precession. This means that the instantaneous dipole
torque is non-zero, and therefore the Leggett-Takagi relaxation is essential for these
states. The other modes should be observed at lower temperature where dissipation
decreases. It is not clear, however, if the new modes are refated to the new NMR
regime found at low temperature [4].
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Appendix

We have used a computer program developed by Leman [5] to solve numerically the
Leggett equations:

8,S—HxS=T (A1)

8,R; = R; x (H - S"'XTT). (A2)

Here the dipole torque is

= 6 Fp
T= —Ri X Emﬁ: (A3)
and the dipole encrgy
Fp(R;) = Fp(Ry;) = %Xﬂi(ﬁ' R- %)2- (Ad)

The external ficld H consists of the constant ficld H, and the transverse RF field
Hpp(w) L H, with the frequency w close to the Larmor frequency w; = H, We
have used H, = 330G and Q,; = 250kHz; all other parameters are given in the table.
We maintained a continuous linearly polarized RF field, Hgg, which corresponds to
Hpgg /2 for the proper circularly polarized component, ie. for the component that
precesses in the same direction as the magnetization. The pumping from the RF
field compensates the energy losses, caused by dissipation, according to the following
equation:

WHgpS, sina = 777 (AS5)

where o is the angle between the precessing RF field and the precessing transverse
magnetization. In the table the dissipation is described by the parameter of
longitudina) relaxation, I' = TQ2.

The analytical values of §, were calculated using (19) for the RO mode, which
exists at negative frequency shifts w < 0, and (17) for the Rs-TS mode, which exists
at positive frequency shifts w > 0. The values for w and h were obtained using (7);
it is important that in the equation for h one should use half of the magnitude of
the RF field, since only one circularly polarized component of the field is important.



1768

G E Volovik

References

8]

(2]
2

4]
5]

16l

8]
{10]

1)
(2]

Borovik-Romanov A, Bunkov Yu, Dmitriev V V and Mukharsky Yu 1984 Pis Zh. Eksp. Teor Fiz
40 256 (Engl. Transt. 1984 JETP Lext 40 1033)

Fomin I A 1984 Pis. Zh Eksp. Teor Fiz. 40 260 (Engl. Transl. 1984 JETP Lew. 40 1037)

Kondo Y, Korhonen J S, Krusius M, Dmitriev V 'V, Mukharsky Yu M, Sonin E B and Volovik G E
1991 Phys. Rev Lew. 67 81

Kondo Y, Korhonen J S, Krusius M, Dmitricv V V, Thuneberg E V and Volovik G E 1992 Phys.
Rev. Lett. 68 3331

Bunkov Yu M, Fisher § N, Guenault A M and Pickeit G R 1992 Phys. Rev Lett 69 3092

Golo V L and Leman A A 1991 Physica B 169 525

Golo V L and Leman A A 1990 X Low Zemp. Phys. 80 89

Kharadze G and Vachnadze G 1992 Pis. Zh Eksp. Teor Fiz. 56 474 (Engl. Transl. 1992 JETP Len.
56 458)

Misirpashaev T Sh and Volovik G E 1992 Zh Eksp. Teor Fiz 101 1197 (Engl. Thansl. 1992 Sou
Phys.~JETP 75 650)

Fomin I A 1978 X Low Tanp. Phys 31 509

Abragam A and Goldman M 1982 Nuclear Magnetism: Order and Disorder (Oxford: Qlarendon)

Korhonen I S, Dmitriev V V, Krusius M, Parts U, Bunkov Yu M, Kondo ¥, Mukharskiy Yu M and
Thuneberg E V 1992 Report TKK-F-A702 Otaniemi, Finland (1993 Phys. Rev: B submitted)

Bunkov Yu M and Timofeevskaya O 191 Pis. Zh. Eksp. Teor Fiz 54 232 (Engl. Transl. 1991 JETP
Lett. 54 228)

Korhonen F S and Volovik G E 1992 Fis. Zh. Eksp. Teor Fiz. 55 358 (Engl. Transl. 1992 JETP Leut.
55 362

Fomin 1 z)& 1990 Modemn Problems in Condensed Matter Sciences 26: Felium Three ed W P Halperin
and L P Pitaevskii (Amsterdam: North-Holland) p 610



